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Abstract 
 

We present our ongoing development of a compact (<1.5 liters) and high-performance (10-14 
at 104 s) laser-pumped rubidium clock for space applications like, e.g., satellite navigation 
systems (GALILEO).  A compact laser head was developed that includes frequency stabilization 
of the pump light to a reference cell.  Recent clock stability results obtained with this laser head 
reach 2·10-13 at 1000s, limited mainly by residual cell temperature coefficients and light shift 
effects.  We discuss strategies to overcome these limitations and the relationship between the 
stabilities of the pump laser and the clock.  Comparisons of the laser and clock frequency 
stabilities are presented for stabilization to both Doppler and sub-Doppler spectroscopy. 
 
 
 

INTRODUCTION 
 
Optically pumped vapor-cell atomic frequency standards, often referred to as rubidium clocks, combine 
the competitive frequency stabilities of a secondary frequency standard with the advantages of a compact 
size, low mass, low power consumption, and relatively low unit prices, making them interesting for a 
variety of scientific, commercial, and space-oriented applications.  For example, lamp-pumped Rb clocks 
today also constitute one of the main foundations of the GPS satellite navigation system. 
 
It has been demonstrated, that the short-term and – to some extent – long-term stability of Rb clocks can 
be significantly improved when the discharge lamp implemented for optical pumping is replaced by a 
narrow-band laser source [1-3].   In order to exploit this advantage, our ongoing activity aims to develop a 
compact and high-performace laser-pumped Rb clock for space applications, e.g., as a possible upgrade 
candidate for future generations of the GALILEO satellite navigation system.  Our design goal is to 
demonstrate a compact clock unit (< 1.5 liters, < 1.5 kg) with an improved stability of 10-14 at 104 
seconds.  
 
 
LASER-PUMPED  SPACE  RB  STANDARD 
 
The implementation of laser pumping instead of the discharge lamps widely used in Rb clocks offers the 
possibility of improved control of the pump light spectrum, as well as reduced intrinsic linewidths (down 
to 500 Hz) and increased signal contrast (up to 25%) of the microwave resonance, leading to improved 
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short-term stabilities of the clock [1-3].   
 
In the frame of an ARTES-5 project, supported by the European Space Agency and led by TEMEX 
Neuchâtel Time (TNT), we are evaluating this implementation of laser optical pumping to Rb atomic 
clocks.  We are following a modular approach (cf. Figure 1):  A lamp-removed, modified commercial 
rubidium clock [4] provides the physics package of the clock unit, and the pump light is provided by an 
independent laser-head module.  This allows for easy modifications or even exchange of the pump light 
source, while maintaining full functionality of the clock unit.  It is important to mention that before the 
lamp was removed, the TNT clock proved to have a frequency stability of 3·10-12 at 1 second and below 
5·10-14 at 10,000 seconds.  In this manner, we could directly benefit from all the already performed 
progress and focus directly on the laser-related issues.  Even more important, we could be sure that any 
instability above these levels had to be connected with the laser and not from the rest of the frequency 
standard. 
 
 
A  COMPACT,  FREQUENCY-STABILIZED  LASER  HEAD 
 
We have developed a compact, frequency-stabilized laser head for optical pumping of the clock, that can 
also be utilized in stand-alone applications.  The physics package of this laser head occupies a volume of 
only 200 cm3 and is comprised of a Littrow-type external-cavity diode laser (ECDL) and a small Rb 
vapor cell used as atomic reference [5].  Frequency stabilization of the laser output is achieved by 
stabilization to sub-Doppler saturated absorption lines of the reference cell by using a FM modulation 
technique.  The unit delivers an optical output power of more than 2 mW with a spectral linewidth below 
1.5 MHz, quite sufficient for the operation of the Rb clock.  To our knowledge, this constitutes the 
smallest frequency stabilized laser head of its type realized today.  For further improvements and 
miniaturization, we envisage replacing the ECDL with more advanced diode lasers like, e.g., DBR or 
DFB lasers. 
 
 
 

 

{ 
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Figure 1.  The modular laser-pumped Rb frequency standard.  Left: Stabilized laser-head 
module, including the reference cell.  Right: lamp-removed Rb clock unit. 
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CLOCK  PERFORMANCE 
 
Figure 2 shows the typical performance of our laser-pumped clock with the laser frequency stabilized to 
the cross-over CO 21-23 resonance in the laser reference cell (cf. Figure 5).  The short-term performance 
up to about 1,000 seconds reproduces the stability of 3·10-12 τ-1/2 of the lamp-operated clock unit.  We 
expect to improve this short-term stability by adapting the detection electronics to the strongly increased 
signal contrast of about 15% and by optimizing the quartz LO loop, which is currently degraded in order 
to allow a more flexible setup for experimental studies [6].  On the medium- and long-term timescales 
beyond 1,000 seconds, the frequency drifts are mainly caused by the temperature coefficient of the clock 
resonance cell and light shift effects due to laser intensity fluctuations (DC effect ≈10-9; see below for 
details).  We are currently working on the reduction of these effects. 
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Figure 2.  Typical stability performance of the modular Rb clock from Figure 1 in terms of the 
Allan standard deviation. 

 
 

LASER  FREQUENCY-STABILIZATION  SCHEMES 
 
While the sub-Doppler stabilization scheme implemented in the laser head gives satisfactory results, in a 
commercial product, a simpler and more robust scheme like, e.g., based on simple Doppler-broadened 
absorption spectroscopy, is desirable.  This approach would result in only one (broader) reference line 
and, thus, avoid the need to distinguish between several closely spaced references lines to which the laser 
can be locked (cf. the three narrow lines in the bottom trace of Figure 5).  We have therefore studied 
whether the laser frequency stability of the simpler Doppler scheme would still be sufficient for a 
successful operation of the envisaged high-performance Rb clock.  The experimental results for the 
comparison of the laser frequency stability reached with the “Doppler” and “sub-Doppler” stabilization 
are shown in Figure 3 [7].  As can be seen, the “sub-Doppler” stabilization fulfills the laser frequency 
requirements imposed by the clock stability specifications on all timescales shown.  In contrast, the 
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“Doppler” scheme shows drifts that are too large on timescales larger than 100 seconds, mainly due to 
temperature variations of the reference cell.  However, this frequency stability might still be useful for a 
Rb clock with lower performance goals or other instruments involving a compact, stabilized laser source. 
 
Figure 4 shows the results of clock stability measurements, where for comparison both the “Doppler” and 
“sub-Doppler” schemes were used.  Obviously, the clock performance is degraded with the “Doppler” 
laser stabilization already at very short integration times, and remains essentially constant at a level 
around 3·10-12, although the laser frequency stability from Figure 4 should be sufficient to meet the same 
clock performance as with the “sub-Doppler” stabilization for up to 100 seconds.  We attribute the 
difference in clock stability mainly to the fact that with the “Doppler” scheme the laser is stabilized at a 
frequency detuning of about 250 MHz from the point of zero light shift, where light-shift effects due to 
laser intensity fluctuations are strongly increased compared to the much smaller detuning around 40 MHz 
for sub-Doppler stabilization to the cross-over CO 21-23 line.  Furthermore, the “Doppler” stabilization 
scheme requires a much larger FM modulation amplitude on the laser, which can contribute to additional 
detection noise via conversion in the clock resonance cell.  
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Figure 3.  Laser frequency stability performance for stabilization to sub-Doppler saturated 
absorption or simple Doppler-broadened Rb vapor absorption lines.  The stability specification 
is derived from the slope of the light-shift curves in Figure 5 for typical clock operation 
conditions. 
 
 

LIGHT-SHIFT  EFFECTS 
 
One major limitation in laser-pumped Rb clocks arises from the light-shift effect, i.e. from the change of 
atomic level energies induced by the interacting pump light field.  Figure 5 shows the resulting light shift 
of the clock frequency measured for our laser-pumped clock as a function of both the laser frequency and 
intensity, where the bottom trace also shows the absorption signal of the laser-head reference cell.  As can 
be seen, the depicted situation does not allow one to stabilize the laser frequency exactly to the zero light- 
shift point, but even for stabilization to the closest reference line (CO 21-23), a detuning of about 40 MHz 
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persists.  Accordingly, in addition to the light shift related to frequency instabilities of the laser, light 
shifts mediated by pump light intensity fluctuations will also degrade the clock stability.  In order to 
reduce these limitations, the laser detuning from the zero light-shift point and laser fluctuations have to be 
reduced, or the susceptibility of the clock to the light shift, i.e., the slopes and offsets of the curves in 
Figure 5, needs to be diminished, as described in the next paragraph. 
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Figure 4.  Laser frequency stability performance for stabilization to sub-Doppler saturated 
absorption or simple Doppler-broadened Rb vapor absorption lines. 
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Figure 5.  Light shift of the clock frequency as a function of pump light frequency and 
intensity. Frequency detuning is given relative to the cross-over resonance arising from the 
87Rb F=2→1 and F=2→3 transitions in the (laser) reference cell (denoted CO 21-23 in the 
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text). 
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NEW  STRATEGIES  FOR  LIGHT-SHIFT  REDUCTION 
 
The reduction of light shift effects has been an active field of research in the past, and several approaches 
have been developed for atomic clocks based on optical pumping [8] and coherent population trapping 
[9,10], which however often complicate the physical clock realization.  We have recently developed a 
new and simple method to suppress the influence of the light shift on the clock transition, with respect to 
both frequency and intensity fluctuations [11].  This method relies on frequency modulation of the laser 
pump light at a frequency around 500-600 MHz, corresponding to the width of the light-shift curve of the 
clock transition.  At suitably chosen modulation parameters, one can balance the light-shift contributions 
from the resulting sidebands in the laser spectrum in such a way that their respective positive and negative 
light- shift contributions cancel out.  This results in a “self-correction plateau” of several hundreds of 
MHz width (region of the dashed ellipse in Figure 6), where the slope of the light shift curves and, thus, 
the susceptibility to laser frequency fluctuations are strongly suppressed.  Furthermore, as shown in 
Figure 6, the offset of the self-correction plateau can be made to coincide with the level of zero light shift, 
thus resulting in a simultaneous suppression of the light shift due to intensity variations as well [12].  This 
technique provides an excellent possibility to relax the requirements on the frequency and intensity 
stability of the pump light source. 
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Figure 6.  Light-shift reduction by multi-frequency optical pumping achieved by frequency 
modulation of the laser output.  The dashed curves span incident pump light powers ranging 
from 36 to 105 µW.  Both solid curves refer to the same incident power of 55 µW. 

 
 
 
CONCLUSION 
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We have realized a compact, frequency-stabilized laser head and demonstrated its implementation in a 
laser-pumped Rb atomic clock.  We have studied the influence of light-shift effects due to offsets and 
fluctuations of both frequency and intensity of the pump laser.  These effects have different impact on the 
clock performance, depending which type of the laser-stabilization schemes studied (Doppler and sub-
Doppler) was used in the clock.  Limitations imposed by the reduced frequency stability of the Doppler 
scheme could be overcome by novel techniques for light-shift reduction based on multi-frequency optical 
pumping using FM modulation of the pump laser.  The combination and optimization of these techniques 
should allow one to realize a compact high-performance Rb clock, reaching 10-14 at 105 seconds, for space 
applications. 
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